Calibration of a coaxial step attenuator at a setting of 30 dB (incremental loss) Author: EA

This Example is taken from EA 4/02. See EA 4/02 Section S7 for more details.

The measurement involves the calibration of a coaxial step attenuator at 10 GHz using an attenuation measuring system containing a calibrated step attenuator which acts as the attenuation reference. The method of measurement involves the determination of the attenuation between a matched source and matched load. In this case the unknown attenuator can be switched between a setting of 0 dB and 30 dB and it is this change (called incremental loss) that is determined in the calibration process. The attenuation measuring system has a digital readout and an analogue null detector which is used to indicate the balance condition.

Model Equation:

 $L_{X} = L_{S} + \delta L_{S} + \delta L_{D} + \delta L_{M} + \delta L_{K} + \delta L_{ib} - \delta L_{ia} + \delta L_{0b} - \delta L_{0a}$

List of Quantities:

Quantity	Unit	Definition
L _X	dB	attenuation of the attenuator to becalibrated
L _S	dB	= L_{ib} - L_{ia} attenuation difference of reference attenuator at 30 dB and 0 dB
δL_S	dB	correction obtained from the calibration of the reference attentuator
δL _D	dB	change of the attenuation of the reference attenuator since its last calibration due to drift
δL _M	dB	correction due to mismatch loss
δL _K	dB	correction for leakage signals between input and output of the attenuator to be calibrated due to imperfect isolation
δL _{ib}	dB	correction due to the limited resolution of the reference detector at 30 dB
δL _{ia}	dB	correction due to the limited resolution of the reference detector at 0 dB
δL _{0b}	dB	correction due to the limited resolution of the null detector at 30 dB
δL _{0a}	dB	correction due to the limited resolution of the null detector at 0 dB

Date: 08/22/2007	File: S07_(picture).smu

Page 1 of 3

S 7	
U 1	

L_S:

Туре А
Method of observation: Direct
Number of observations: 4

No.	Observation				
1	30.033 dB				
2	30.058 dB				
3	30.018 dB				
4	30.052 dB				

Arithmetic Mean: 30.040250 dB Standard Deviation: 0.018 dB Standard Uncertainty: 9.132.10⁻³ dB Degrees of Freedom: 3

MEASUREMENTS: Four observations are made of the incremental loss of the attenuator to be calibrated between settings of 0 dB and 30 dB. (see EAL-R2-S1:S7.11)

δL_S: Type B normal distribution Value: 0.003 dB Expanded Uncertainty: 0.005 dB Coverage Factor: 2

REFERENCE ATTENUATOR: The calibration certificate for the reference attenuator gives a value of attenuation for the 30,000 dB setting at 10 GHz of 30,003 dB with an associated expanded uncertainty of 0,005 dB (coverage factor k=2). The correction of +0,003 dB with the associated expanded uncertainty of 0,005 dB (coverage factor k=2) is considered to be valid for attenuation settings of the reference attenuator which differ not more $\pm 0,1$ dB from the calibrated setting of 30,000 dB.

δL_D: Type B rectangular distribution Value: 0.0 dB Halfwidth of Limits: 0.002 dB

DRIFT OF THE REFERENCE: The drift of the attenuation of the reference attenuator is estimated from its calibration history to be zero with limits $\pm 0,002$ dB.

δL _M :	Type B U-shaped distribution
	Value: 0.0 dB
	Halfwidth of Limits: 0.0283 dB

MISMATCH LOSS: (see EAL-R2-S1:S7.6)

δL_K: Type B rectangular distribution Value: 0.0 dB Halfwidth of Limits: 0.003 dB

LEAKAGE CORRECTION: Leakage signals through the attenuator to be calibrated have been estimated from the measurements at 0 dB setting to be at least 100 dB below the measurement signal. The correction for leakage signals is estimated from these findings to be within ±0,003 dB at the 30 dB setting.

δL_{ib}: Type B rectangular distribution Value: 0.0 dB Halfwidth of Limits: 0.0005 dB

RESOLUTION OF THE REFERENCE ATTENUATOR SETTING: The digital readout of the reference attenuator has a resolution of 0,001 dB from which the correction for resolution is estimated to be within ± 0.0005 dB.

Date: 08/22/2007	File: S07_(picture).smu	Page 2 of 3
------------------	-------------------------	-------------

δL_{ia}: Type B rectangular distribution Value: 0.0 dB Halfwidth of Limits: 0.0005 dB

RESOLUTION OF THE REFERENCE ATTENUATOR SETTING: The digital readout of the reference attenuator has a resolution of 0,001 dB from which the correction for resolution is estimated to be within ± 0.0005 dB.

δL _{0b} :	Type B normal distribution
00	Value: 0.0 dB
	Expanded Uncertainty: 0.002 dB
	Coverage Factor: 1.0

RESOLUTION OF THE NULL DETECTOR: The detector resolution was determined from a previous evaluation to have a standard deviation of 0,002 dB at each reading with assumed normal probability distribution.

δL_{0a}: Type B normal distribution Value: 0.0 dB Expanded Uncertainty: 0.002 dB Coverage Factor: 1

RESOLUTION OF THE NULL DETECTOR: The detector resolution was determined from a previous evaluation to have a standard deviation of 0,002 dB at each reading with assumed normal probability distribution.

Uncertainty Budgets:

L _x : attenuation of the attenuator to becalibrated						
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
L _S	30.040250 dB	9.132·10 ⁻³ dB	normal	1.0	9.1.10 ⁻³ dB	16.6 %
δL_S	3.000⋅10 ⁻³ dB	2.500·10 ⁻³ dB	normal	1.0	2.5 10 ⁻³ dB	1.2 %
δL _D	0.0 dB	1.155·10 ⁻³ dB	rectangular	1.0	1.2·10 ⁻³ dB	0.3 %
δL_M	0.0 dB	0.02001 dB	U-distr.	1.0	0.020 dB	79.7 %
δL _K	0.0 dB	1.732⋅10 ⁻³ dB	rectangular	1.0	1.7 10 ⁻³ dB	0.6 %
δL_{ib}	0.0 dB	288.7·10 ⁻⁶ dB	rectangular	1.0	290∙10 ⁻⁶ dB	0.0 %
δL_{ia}	0.0 dB	288.7·10 ⁻⁶ dB	rectangular	-1.0	-290·10 ⁻⁶ dB	0.0 %
δL_{0b}	0.0 dB	2.000·10 ⁻³ dB	normal	1.0	2.0·10 ⁻³ dB	0.8 %
δL_{0a}	0.0 dB	2.000·10 ⁻³ dB	normal	-1.0	-2.0·10 ⁻³ dB	0.8 %
L _X	30.04325 dB	0.02242 dB				

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
L _X	30.043 dB	0.045 dB	2.00	95% (t-table 95.45%)

Page 3 of 3