Calibration of a gauge block of nominal length 50 mm	
--	--

Calibration of a gauge block of nominal length 50 mm

The calibration of the grade 0 gauge block (ISO 3650) of 50 mm nominal length is carried out by comparison using a comparator and a calibrated gauge block of the same nominal length and the same material as reference standard. The difference in central length is determined in vertical position of the two gauge blocks using two length indicators contacting the upper and lower measuring faces.

The actual length of the gauge block to be calibrated is related to the actual length of the reference standard by the equation

$I_X' = I_S' + \delta I$

with δI being the measured length difference. I_X blocks under the measurement conditions, in particular at a temperature which on account of the uncertainty in the measurement of laboratory temperature may not be identical with the reference temperature for length measurements.

Model Equation:

 $I_X = I_S + \delta I_D + \delta I + \delta I_C - L^* (\alpha_{av} * \delta t + \delta \alpha * \Delta t_{av} + u_{at}) - \delta I_V$

List of Quantities:

Quantity	Unit	Definition				
I _X mm length of the gauge block to		length of the gauge block to be calibrated				
		length of the reference gauge block at the reference temperature of $t_0=20$ °C according to its calibration certificate				
δIDmmChange of the length of the reference gauge lto drift		Change of the length of the reference gauge block since its last calibration due to drift				
δl mm observed difference in length between the unknow block		observed difference in length between the unknown and the reference gauge block				
δl _C	mm	correction for non-linearity and offset of the comparator				
L	mm	nominal length of the gauge blocks under consideration				
α_{av}	K ⁻¹	average of the thermal expansion coefficients of the unknown and the reference gauge block				
δt	К	difference in temperature between the unknown the reference gauge block				
$\delta \alpha = K^{-1}$ difference in the thermal expansion coefficients be reference gauge block		difference in the thermal expansion coefficients between the unknown and the reference gauge block				
Δt_{av} K deviation of the average temperature of the unknown block from the reference temperature		deviation of the average temperature of the unknown and the standard gauge block from the reference temperature				
u _{at}		coorection for second order terms of $(\delta \alpha * \Delta t_{av})$				
δl _V	mm	correction for non-central contacting of the measuring faces of the unknown gauge block				

I_s:

Type B normal distribution Value: 50.000020 mm Expanded Uncertainty: 30·10⁻⁶ mm Coverage Factor: 2.0

REFERENCE STANDARD: The length of the reference gauge block together with the associated expanded uncertainty of measurement is given in the calibration certificate of a set of gauge blocks as $50,000\ 02\ \text{mm} \pm 30\ \text{nm}$ (coverage factor k=2).

Page 1 of 4

δl _D :	Value: 0 mm	ular distribution imits: 30·10 ⁻⁶ mm		
from previous	calibrations to be z	ero with limits ±30 nm.	ngth of the reference gauge bloc General experience with gauge bloc e and that a triangular probability	blocks of this
δΙ:	Type A Method of ob Number of ob	servation: Direct servations: 5		
	No.	Observation]	
	1	-100-10 ⁻⁶ mm		
	2	-90⋅10 ⁻⁶ mm	1	
	3	-85·10 ⁻⁶ mm	1	
	4	-95∙10 ⁻⁶ mm]	
	5	-100·10 ⁻⁶ mm]	
	Pooled Stand Pooled Degre Standard Unc	an: -94.000·10 ⁻⁶ mm ard Deviation: 12·10 ⁻⁶ m es of Freedom: 9 ertainty: 4.749·10 ⁻⁶ mm		
measurements difference betv	s is used for the ev	aluation of the repeatabi gauge block and the ref	tion of 15 nm derived from previ ility. The following observations erence standard, the comparate	are made for the
δl _C :		gular distribution		
	Value: 0 mm Halfwidth of L	imits: 32·10 ⁻⁶ mm		
this it can be a difference are 0 gauge block be within ±1 μr	Halfwidth of L R: The comparato scertained that for within the limits ±(to be calibrated ar	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). Ind the grade K reference	eet the specifications stated in E to $\pm 10 \ \mu m$ corrections to the inc Taking into account the toleranc gauge block the maximum leng hearity and offset corrections of t	licated length ses of the grade gth difference will
this it can be a difference are 0 gauge block be within ±1 μr used.	Halfwidth of L R: The comparato scertained that for within the limits ±(to be calibrated ar	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). ad the grade K reference hits of ±32 nm for non-lir	to $\pm 10 \mu m$ corrections to the inc Taking into account the tolerance gauge block the maximum leng	licated length ses of the grade gth difference will
this it can be a difference are 0 gauge block be within ±1 μr used. L:	Halfwidth of L R: The comparato scertained that for within the limits ±(to be calibrated ar m leading to the lin Constant	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). ad the grade K reference hits of ±32 nm for non-lir	to $\pm 10 \mu m$ corrections to the inc Taking into account the tolerance gauge block the maximum leng	licated length ses of the grade gth difference will
this it can be a difference are 0 gauge block be within ±1 μr used. L: Nominal length	Halfwidth of L R: The comparato scertained that for within the limits ±(: to be calibrated ar m leading to the lin Constant Value: 50 mm n of the gauge bloc Type B rectar Value: 11.5-1	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). ad the grade K reference hits of ±32 nm for non-lin k to be calibrated.	to $\pm 10 \mu m$ corrections to the inc Taking into account the tolerance gauge block the maximum leng	licated length ses of the grade gth difference will
this it can be a difference are 0 gauge block be within $\pm 1 \mu r$ used. L: Nominal length α_{av} : TEMPERATUE	Halfwidth of L R: The comparato scertained that for within the limits ±(; to be calibrated ar m leading to the lim Constant Value: 50 mm h of the gauge bloc Type B rectar Value: 11.5-10 Halfwidth of L RE CORRECTION rer's data for the g	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). ad the grade K reference hits of ±32 nm for non-lin k to be calibrated. egular distribution $D^{-6} K^{-1}$ imits: 1.10 ⁻⁶ K ⁻¹ : Based on the calibration	to ±10 µm corrections to the inc Taking into account the tolerand gauge block the maximum leng hearity and offset corrections of the nearity and offset corrections of the ted the linear thermal expansion	licated length es of the grade gth difference will the comparator
this it can be a difference are 0 gauge block be within $\pm 1 \mu r$ used. L: Nominal length α_{av} : TEMPERATUR the manufactu	Halfwidth of L R: The comparato ascertained that for within the limits ±(; to be calibrated ar m leading to the lin Constant Value: 50 mm n of the gauge bloc Type B rectar Value: 11.5-1 Halfwidth of L RE CORRECTION rer's data for the g e blocks is assume	r has been verified to me length differences D up 30 nm + 0,02 * abs(D)). ad the grade K reference hits of ±32 nm for non-lin k to be calibrated. agular distribution $D^{-6} K^{-1}$ imits: $1 \cdot 10^{-6} K^{-1}$: Based on the calibratic auge block to be calibrated auge block to be calibrated auge block to be calibrated auge block to be calibrated	to ±10 µm corrections to the inc Taking into account the tolerand gauge block the maximum leng hearity and offset corrections of the nearity and offset corrections of the ted the linear thermal expansion	licated length es of the grade gth difference will the comparator

	Calibration of a gauge block of nominal length 50 mm					
TEMPERATURE CORRECTION: Before calibration care is taken to ensure that the gauge blocks assume ambient temperature of the measuring room. The remaining difference in temperature between the standard and the gauge block to be calibrated is estimated to be within $\pm 0,05$ K.						
δα:	δα: Type B triangular distribution Value: 0.0 K ⁻¹ Halfwidth of Limits: 2·10 ⁻⁶ K ⁻¹					
	TEMPERATURE CORRECTION: Combining the two rectangular distributions the difference in linear thermal expansion coefficient is triangularly distributed within the limits $\pm 2E-6$ °C ⁻¹ .					
Δt_{av} :	Δt _{av} : Type B rectangular distribution Value: 0 K Halfwidth of Limits: 0.5 K					
	TEMPERATURE CORRECTION: The deviation of the mean temperature of measurement from the reference temperature $t_0 = 20$ °C is estimated to be within ±0,5 °C.					
u _{at} :	u _{at} : Type B normal distribution Value: 0 Expanded Uncertainty: 0.236·10 ⁻⁶ Coverage Factor: 1.0					
$(\delta \alpha)$ and the develocity Therefore second contribution rest	TEMPERATURE CORRECTION: The best estimates of the difference in linear expansion coefficients $(\delta \alpha)$ and the deviations of the mean temperature from the reference temperature (Δt_{av}) are zero. Therefore second order terms have to be taken into account in the evaluation of their uncertainty contribution resulting in the product of standard uncertainties associated with the factors of the product term $(\delta \alpha \times \Delta t_{av})$ in the model equation. The final standard uncertainty is $u(\delta \alpha \times \Delta t_{av}) = 0.236 \cdot 10^{-6}$.					
δI_{V} :	δl _V : Type B rectangular distribution Value: 0 mm Halfwidth of Limits: 6.7·10 ⁻⁶ mm					
VARATION IN LENGTH: For gauge blocks of grade 0 the variation in length determined from measurements at the centre and the four corners has to be within $\pm 0,12$ mm (ISO 3650). Assuming that this variation occurs on the measuring faces along the short edge of length 9 mm and that the central length is measured inside a circle of radius 0,5 mm the correction due to central misalignment of the contacting point is estimated to be within $\pm 6,7$ nm.						
Date: 03/07/2009	File: S04.smu	Page 3 of 4				

x	Incertainty Budgets: <: length of the gauge block to be calibrated						
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index	
ا _S	50.00002000 mm	15.00·10 ⁻⁶ mm	normal	1.0	15⋅10 ⁻⁶ mm	19.3 %	
δl _D	0.0 mm	12.25·10 ⁻⁶ mm	triangular	1.0	12⋅10 ⁻⁶ mm	12.8 %	
δΙ	-94.000·10 ⁻⁶ mm	4.749·10 ⁻⁶ mm	normal	1.0	4.7·10 ⁻⁶ mm	1.9 %	
δl _C	0.0 mm	18.48·10 ⁻⁶ mm	rectangular	1.0	18⋅10 ⁻⁶ mm	29.2 %	
L	50.0 mm						
$\alpha_{\sf av}$	11.5000⋅10 ⁻⁶ K ⁻¹	577.4·10 ⁻⁹ K ⁻¹	rectangular	0.0	0.0 mm	0.0 %	
δt	0.0 K	0.02887 K	rectangular	-580·10 ⁻⁶	-17·10 ⁻⁶ mm	23.6 %	
δα	0.0 K ⁻¹	816.5·10 ⁻⁹ K ⁻¹	triangular	0.0	0.0 mm	0.0 %	
Δt_{av}	0.0 K	0.2887 K	rectangular	0.0	0.0 mm	0.0 %	
u _{at}	0.0	236.0·10 ⁻⁹	normal	-50	-12·10 ⁻⁶ mm	11.9 %	
δl _v	0.0 mm	3.868•10 ⁻⁶ mm	rectangular	-1.0	-3.9·10 ⁻⁶ mm	1.3 %	
ا _X	49.99992600 mm	34.18·10 ⁻⁶ mm			•	-	

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
Ι _Χ	49.999926 mm	68∙10 ⁻⁶ mm	2.00	95% (t-table 95.45%)