	Calibration of a nominal 10 kOhm standard resistor	
--	--	--

Calibration of a nominal 10 kOhm standard resistor

The resistance of a four terminal standard resistor is determined by direct substitution using a long scale digital multimeter (7½ digit DMM) on its resistance range, and a calibrated four terminal standard resistor of the same nominal value as the item to be calibrated as reference standard. The resistors are immersed in a well stirred oil bath operating at a temperature of 23 °C monitored by a centrally placed mercury-in-glass thermometer.

The resistors are allowed to stabilise before the measurement. The four terminal connectors of each resistor are connected in turn to the terminals of the DMM. It is determined that the measuring current on the 10 kOhm range of the DMM of 100 μ A is sufficiently low not to cause any appreciable self-heating of the resistors. The measuring procedure used also ensures that the effects of external leakage resistances on the result of measurement can be considered to be insignificant.

Model Equation:

 $R_{X} = (R_{S} + \delta R_{D} + \delta R_{TS}) \times r_{C} \times r - \delta R_{TX}$

List of Quantities:

Quantity	Unit	Definition
R _X	Ω	resistance of the unknown resistor
R _S	Ω	resistance of the reference
δR _D	Ω	change of the resistance of the reference since its last calibration due to drift
δR_{TS}	Ω	temperature related resistance deviation of the reference
r _C		correction factor for parasitic voltages and instrument resolution
r		$=R_{iX}/R_{iS}$ ratio of the indicated resistance for the unknown resistor and the reference resistor
δR_{TX}	Ω	temperature-related resistance deviation of the unknown resistor

REFERENCE STANDARD: The calibration certificate for the reference standard gives a resistance value of 10000,053 Ohm ±5 m Ω (coverage factor k = 2) at the specified reference temperature of 23 °C.

δR _D :	Type B rectangular distribution
	Value: +20·10 ⁻³ Ω
	Halfwidth of Limits: $10.10^{-3} \Omega$

DRIFT OF THE STANDARD: The drift of the resistance of the reference resistor since its last calibration is estimated from its calibration history to be +20 m Ω with deviations within ±10 m Ω .

δ R_{TS}:Type B rectangular distribution
Value: 0 Ω
Halfwidth of Limits: 2.75·10⁻³ Ω

TEMPERATURE CORRECTION: The temperature of the oil bath is monitored with a calibrated thermometer to be 23.00 °C. Deviations from this value have been estimated to be within ±0.055 K, including temperature gradients in the oil bath. Thus the known value $5.0 \cdot 10^{-6}$ K⁻¹ of the temperature coefficient (TC) of the reference resitor gives limits ±2,75 m Ω for the deviation from its resistance value according to calibration, due to a possible deviation from the operating temperature.

ile: S03.smu
i

Page 1 of 3

	C	alibration of a nom	iinal 10 kOhm st	andard resistor		
r _c :	Type B trian Value: 1.0 Halfwidth of	gular distribution Limits: 1.0·10 ⁻⁶				
RESISTAN contributio the relative instrument resulting for	NCE MEASUREMENT ns are correlated but e difference in the res resolution, which are or the ratio r _C is triang	TS: Since the sa the effect is to re istance readings e estimated to ha ular with expecta	me DMM is us educe the unce due to system ve limits of ± 0 , ation 1,000 000	ed to observe bo ertainty and it is o hatic effects such 5E-6 for each re 0 0 and limits ±1,	oth and the uncer only necessary to a as parasitic volt ading. The distrik 0E-6.	tainty consider ages and oution
r:	Type A Method of ol Number of o	oservation: Direc	t			
	No.	Observat	ion			
	1	1.00001	04			
2 1.0000107						
3 1.0000106						
	4	1.00001	03			
5 1.0000105						
	Arithmetic M Standard De Standard Ur Degrees of F	ean: 1.00001050 eviation: 160·10 ⁻⁹ certainty: 70.71· Freedom: 4	0000 10 ⁻⁹			
δ R _{TX} :	Type B recta Value: 0 Ω Halfwidth of	angular distributio Limits: 5.5⋅10 ⁻³ Ω	on 2			
TEMPERA thermoment including to variations	TURE CORRECTION ter to be 23.00 °C. De emperature gradients of the unknown resite	N: The temperate eviations from thi in the oil bath. F r due to a tempe	ure of the oil ba s value have b From the manu erature variation	ath is monitored een estimated to facturor 10.0·10· n is estimated to	with a calibrated be within ±0.05 6 K ^{-1,} thus the re be within ±5,5 m	5 K, sistance ιΩ
Uncertair	nty Budgets:					
R _X :	resistance	of the unknown	resistor			
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
R _s	10000.053000 Ω	2.500·10 ⁻³ Ω	normal	1.0	2.5·10 ⁻³ Ω	9.0 %
δR _D	0.020000 Ω	5.774·10 ⁻³ Ω	rectangular	1.0	5.8·10 ⁻³ Ω	48.1 %
δR_{TS}	0.0 Ω	1.588·10 ⁻³ Ω	rectangular	1.0	1.6·10 ⁻³ Ω	3.6 %

triangular

normal

rectangular

408.2·10⁻⁹

70.71·10⁻⁹

3.175·10⁻³ Ω

8.328·10⁻³ Ω

10000

10000

-1.0

1.000000000

1.00001050000

0.0 Ω

10000.178001 Ω

 δR_{TS}

 \mathbf{r}_{C}

r

 $\delta \mathsf{R}_{\mathsf{TX}}$

 R_{X}

Page 2 of 3

24.0 %

0.7 %

14.5 %

4.1·10⁻³ Ω

710·10⁻⁶ Ω

-3.2·10⁻³ Ω

		Calibration of a nominal 10 kOhm standard resistor	
--	--	--	--

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
R _X	10000.178 Ω	0.017 Ω	2.00	95% (t-table 95.45%)

Date: 01/18/2001	File: S03.smu	Page 3 of 3
------------------	---------------	-------------